
S. Sarkar, G. Erlebacher, M. Y. Hussaini, and H. O. Kreiss, `The Analysis and

Modelling of Dilatational Terms in Compressible Turbulence,' J. Fluid Mech., 227,

473 (1991a).

S. Sarkar, G. Erlebacher, and M. Y. Hussaini, `Direct Simulation of Compressible

Turbulence in a Shear Flow,' Theor. Comput. Fluid Dyn., 2, 291 (1991b).

S. Sarkar, `The Pressure-Dilatation Correlation in Compressible Turbulence,' Phys.

Fluids A, 4, pp. 2674-2682(1992).

S. Sarkar and M. Y. Hussaini, \ Computation of the Acoustic Radiation from

Bounded Homogeneous Flows," Computational Aeroacoustics, J. C. Hardin and M.

Y. Hussaini, eds., pp. 335-349, Springer Verlag (1993).

J. Seiner, `Fluid Dynamics and Noise Emission Associated with Supersonic Jets,'

Studies in Turbulence, T. B. Gatski, S. Sarkar and C. G. Speziale, eds., pp. 297-323

(1991).

A. Witkowska and D. Juve, `Numerical Simulation of Noise Generated by Homo-

geneous and Isotropic Turbulence,' Proc. 13th Colloquium on Aero- and Hydro-

Acoustics, Lyon, (1993).

18



A. Leonard, `Computing three-dimensional 
ows with vortex elements,' in Annual

Reviews of Fluid Mechanics, 17, pp. 523-559 (1985).

M. Lesieur, Turbulence in Fluids, 2nd edn., Kluwer Academic, (1990).

M. J. Lighthill, `On Sound Generated Aerodynamically I. General Theory,' Proc.

Roy. Soc. A, 211, pp. 564-587 (1952).

M. J. Lighthill, `On Sound Generated Aerodynamically II. Turbulence as a Source

of Sound,' Proc. Roy. Soc. A, 222, pp. 1-32 (1954)

M. J. Lighthill, `The Final Panel Discussion,' Computational Aeroacoustics, J. C.

Hardin and M. Y. Hussaini, eds., pp. 499-513, Springer Verlag (1993).

G. M. Lilley, `On the Noise from Jets,' AGARD-CP-131, pp. 13.1-13.12 (1974).

G. M. Lilley, `The Radiated Noise from Isotropic Turbulence Revisited,' NASA

CR-191547, ICASE Report No. 93-75.

O. M. Phillips, `On the Generation of Sound by Supersonic Shear Layers,' J. Fluid

Mech., 9, pp. 1-28 (1960).

A. Powell, `Theory of Vortex Sound,' J. Acoust. Soc. America, 36, pp. 177-195

(1964).

I. Proudman, `The Generation of Noise by Isotropic Turbulence,' Proc. Roy. Soc.

A, 214, pp. 119-132 (1952).

H. Ribner, `The Generation of Sound by Turbulent Jets,' Advances in Applied

Mechanics, 8, H. L. Dryden and Th. von Karman, eds., pp. 103-182 (1964).

17



Acknowledgements

The authors wish to thank Geo�rey Lilley and Jay Hardin for useful discussions and

their helpful comments on a preliminary draft of the manuscript.

References

D. G. Crighton, `Basic Principles of Aerodynamic Noise Generation,' Prog. Aerospace

Sci., 16, pp. 31-96 (1975).

D. G. Crighton, `Computational Aeroacoustics for Low Mach Number Flows,' Com-

putational Aeroacoustics, J. C. Hardin and M. Y. Hussaini, eds., pp. 50-68, Springer

Verlag (1993)

G. Erlebacher, M. Y. Hussaini, H. O. Kreiss and S. Sarkar `The Analysis and

Simulation of Compressible Turbulence,' Theor. and Comp. Fluid Dyn. 2, 73-95

(1990).

J. E. Ffowcs Williams, `Aeroacoustics,' Ann. Rev. Fluid Mech., 9, pp. 447-468

(1977).

T. B. Gatski, `Sound Production due to Large-Scale Coherent Structures,' AIAA

Paper 79-4081 (1979).

M. E. Goldstein, `Aeroacoustics,' NASA SP-346, (1974).

J. O. Hinze, `Turbulence,' McGraw-Hill (1975).

M. S. Howe, `Contributions to the Theory of Aerodynamic Sound With Applications

to Excess Jet Noise and the Theory of the Flute,' J. Fluid Mech., 71, pp. 625-673

(1975).

16



Proudman (1952) analytically obtained the following relation for the acoustic power,

PA = �(u3=l)
u5

c5

where � = 13 with the particular choice f(r) = e��(r=l)
2=4 for the longitudinal velocity

correlation. In contrast, � ' 2:6 in the present DNS. The analysis of Lilley (1993)

indicates that � is likely to have a value between 3 and 10. The analytical studies have

had to necessarily make some assumptions about the space-time statistics of the acoustic

source while the DNS, although free from such assumptions, is restricted to a moderate

to small turbulence Reynolds number. The LES study of Witkowska and Juve (1993)

which have turbulence Reynolds numbers larger than those in the DNS by an order of

magnitude give � ' 2:5. Although, the DNS and LES studies give consistent results,

further DNS studies at higher Reynolds number are desirable in the future.
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higher resolution 1283 simulation gives a result for F (r) which is similar to the coarse-grid

simulation. The correlation length scale for the acoustic source is 0:10, while the integral,

Taylor and Kolmogorov length scales are 0:58, 0:12, and 0:03, respectively. It thus appears

that the correlation length of @2u2=@t2 in our simulation of isotropic turbulence is smaller

than the turbulence integral length scale and larger than the dissipative length scale.

Eq. (16) was used to provide an alternative estimate of the acoustic power from the

DNS. Fig. 13 shows that the result from Eq. (16) is consistent with the previous result

obtained from statistical post-processing of the instantaneous acoustic pressure. Since

retarded times are neglected in simplifying the exact expression for the acoustic power

Eq.(12) to obtain Eq. (16), it is not surprising that there is some di�erence between the

two methods.

Conclusions

We have applied the hybrid DNS approach to the problem of sound generated by

isotropic turbulence. The combination of a spectral DNS of isotropic turbulence and

the Lighthill acoustic analogy is demonstrated to be a feasible approach for obtaining

the instantaneous acoustic pressure. Although the time derivative form of the Lighthill

acoustic analogy requires more computer memory for storage than the spatial derivative

form, it is preferable due to a less stringent time step constraint.

The numerically computed acoustic e�ciency of isotropic turbulence is much smaller

than that in subsonic jet experiments. The frequency spectrum of the acoustic pressure

indicates that the dominant acoustic frequency is somewhat larger than the frequency

of the energy-containing eddies as found in Proudman (1952) and Lilley (1993). The

computed acoustic power agrees with the theoretically derived proportionality to �M5

t

deduced by Proudman (1952); however the constant of proportionality is smaller than

the analytical result. The acoustic power was computed from the DNS both by ensemble-

averaging the instantaneous acoustic pressure, and also from the two-point, fourth-order

correlation �T 0

xx(0)
�T 0

xx(x). The two methods for obtaining the acoustic power yield con-

sistent results.
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Proudman, then assumes that tA can be considered constant during the integration over

source point A, to obtain �nally

PA(t) =
1

4�c50

Z
�T 0

xx(xA)
�T 0

xx(xB) dxA (14)

The two-point spatial autocorrelation in Eq. (14) is a function of r = jxA�xBj only, due to
the turbulence isotropy. Let us de�ne a0i = (u2� < u2 >; v2� < v2 >;w2� < w2 >), and

denote the spatial correlation (@2a0i=@t
2)A(@2a0j=@t

2)B by Qij(r). The subscript i = 1; 2; 3

denotes the x; y; z components, respectively. Then, Eq. (14) becomes

PA(t) =
1

4�c50

Z
Q11(r)dr (15)

The following expression for Qij can be written due to the isotropy constraint (e.g. see

Hinze(1975))

Qij(r) = (@2u2=@t2)02 [
F (r)�G(r)

r2
rirj +G(r)�ij]

where the 
uctuation (@2u2=@t2)0 = @2u2=@t2� < @2u2=@t2 >, while F (r) and G(r) are

the longitudinal and lateral correlation functions associated with Qij respectively. Thus,

Q11(r) = (@2u2=@t2)02 [F (r) cos2(�) +G(r) sin2(�)]

where � is the angle between r and the x axis. The volume integration in Eq. (15) with

respect to the separation vector r is then performed using a spherical coordinate system

to yield

PA(t) =
(@2u2=@t2)02

c50

Z R

0

r2

3
(F (r) + 2G(r))dr : (16)

Proudman (1952) uses the statistical theory of isotropic turbulence to model the corre-

lations in Eq. (16); we, on the other hand, directly compute (@2u2=@t2)02, F (r) and G(r)

from the DNS data base.

The longitudinal correlation functions F (r) associated with Qij, and f(r) associated

with the velocity �eld are shown in Fig. 11 at the time �0t=K0 = 0:7. Evidently, the

presence of the second time derivative leads to a much smaller correlation length of

the acoustic source relative to the velocity. To con�rm our results, a new simulation

was performed with twice the resolution in both space and time. Fig. 12 shows that the
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greater extent in homogeneous turbulence than in inhomogeneous turbulence, which thus

causes smaller 
uctuations in the radiated sound from homogeneous turbulence relative

to the inhomogeneous case.

The frequency content of the acoustic pressure was obtained by analyzing the nor-

malized acoustic pressure p�A(t) in Fourier space. The power spectrum Ep(!) obtained by

averaging over 400 records of p�A(t) is shown in Fig. 10. The frequency is normalized by

l0=u0, where l0 is the initial longitudinal integral length scale and u0 is the initial rms of

a velocity component. The power spectrum in Fig. 10 has a peak at a Strouhal number

St = !l0=u0 ' 3:5. Thus, the dominant frequency of the sound radiated to the far-�eld

in the isotropic turbulence DNS is somewhat larger than the dominant frequency u0=l0

of the energy-containing range of turbulence.

Computation of the acoustic power from the turbulence statistics

The acoustic power obtained in our simulations is somewhat smaller than predicted

by Proudman's analysis. This discrepancy motivated an alternative method to obtain

the acoustic power wherein the the fourth-order, two-point correlation �T 0

xx(0)
�T 0

xx(r) from

the DNS is used.

Consider an observer point at location (x,0,0). Then, due to Eq. (5) for the acoustic

pressure 
uctuation, the acoustic power PA per unit mass at the observer point given by

Eq. (9) becomes

PA(t) =
1

4�V c50

Z Z
�T 0

xx(xA; tA)
�T 0

xx(xB; tB) dxAdxB (12)

where V is the source volume, and xA and tA denote the position of source point A and

time of sound emission at point A so as to reach observer at time t; similarly, xB and tB

refer to source point B. Proudman assumes that �T 0

xx(xA; t) �T
0

xx(xB; t) is constant over the

maximum time di�erence tA� tB so that retarded time e�ects can be ignored during the

volume integration with respect to source point B. This assumption leads to

PA(t) =
1

4�c50

Z
�T 0

xx(xA; tA)
�T 0

xx(xB; tA) dxA : (13)
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Lilley (1993) �nds � = 3:4 with s = 1 and � = 8:3 with s = 1:25 in an analytical

calculation which assumes the same f(r=l) that corresponds to Proudman's � = 13.

Given the sensitvity of � to the assumed model correlations, it is not surprising that

the analytically determined values for � are somewhat di�erent from the corresponding

results in the simulations. Overall, the DNS value of � is consistent with the lower end

of the range of values of � found by Lilley (1993).

The scaled acoustic power PA=�M
5

t is signi�cantly smaller than that typical of sub-

sonic jets. In subsonic jets the acoustic e�ciency (sound power/jet power) according to

Lighthill (1954) is approximately 10�4M5 , where M is the jet Mach number. The tur-

bulence intensity urms=Ujet can be roughly estimated to be 0:17, and � is roughly 0:1 of

the jet power, which implies that PA=�M
5

t ' 7. Thus the sound radiated from isotropic,

homogeneous turbulence is signi�cantly smaller than that typical of jet acoustics. We

argue below that one of the reasons for this dissimilarity is the homogeneity constraint.

The acoustic pressure 
uctuation is given by Eq.(5). Consider the integral in Eq. (5)

as Mt ! 0.

Z
[ �Tij]� [ �Tij] dy

!
Z

�Tij � �Tij dy

= V < �Tij > �V < �Tij >: (11)

The second line in Eq. (11) follows because retarded time can be neglected in the limit of

Mt ! 0, and the third line follows from the de�nition of the volume average denoted by <

: >. In the case of homogeneous turbulence, < �Tij > is equivalent to an ensemble average,

and since further time averaging does not change a quantity which is already an average

< �Tij > =< �Tij >. Consequently the integral in Eq. (5) is zero when retarded time e�ects

are neglected in the limit of Mt ! 0. However, in the case of inhomogeneous turbulence

< �Tij > is not a temporally smooth quantity, and this integral is not necessarily zero

even if retarded time e�ects were neglected.

For small but �nite Mach number, when retarded time e�ects cannot be neglected,

it is clear that the volume integration smoothes out the temporal oscillation in [ �Tij] to a
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if the proportionality constant from the DNS is taken to be PA=�M
5

t ' 0:10, it is smaller

relative to Proudman's result, Eq. (10), by a factor of 5.

Witkowska and Juve (1993) have computed the sound generated from unforced isotropic

turbulence by performing large eddy simulations (LES) on 163 spatial grids for determin-

ing the turbulent 
ow and then using the Lighthill acoustic analogy for computing the

far-�eld sound. Five turbulent Mach numbers in the range of 0.012 to 0.015 were con-

sidered; the initial Re� was about 400. In agreement with our DNS results, the LES

study �nds that, although the acoustic power is proportional to �M5

t , it is 12 dB less

than Proudman's result for the Heisenberg spectrum. According to Witkowska and Juve

(1993), a reconsideration of Proudman's analysis with the von Karman spectrum instead

of the Heisenberg spectrum decreases the theoretical estimate so that the LES result is

6dB lower than the revised theoretical result.

The turbulence in the DNS has moderate to low Reynolds number since Re� decays

from a value of 50 to 15 during the simulations. The LES of Witkowska and Juve (1993)

has a turbulence Reynolds number which is a factor of 10 higher than the DNS, albeit with

the approximations inherent in a subgrid scale model. Although, there is a di�erence in

Reynolds number, the DNS and LES studies are consistent in giving an acoustic power

which is a factor of 5 smaller than Proudman's result Eq. (10). Proudman's analysis

predates the present computational studies by about four decades and, of necessity, had

to employ various assumptions such as Gaussian statistics for the velocity and its time

derivatives, neglect of retarded time during evaluation of the integral expression for the

acoustic power, neglect of the decay of unforced isotropic turbulence, and a speci�c

shape for the longitudinal space correlation f(r). Lilley (1993), in a reconsideration of

Proudman's analysis, �nds that the coe�cient � in Eq. (6) is likely to be between 3 and

10. In contrast, our DNS gives � ' 2:6. The analysis of Lilley (1993) also elegantly

shows that the acoustic power is sensitive to the shape of the space-time covariance of

Txx, the 
atness factor of the velocity, and is proportional to the fourth power of the

characteristic Strouhal number s = !l=u where l and ! are the integral scales associated

with the spatial and temporal autocorrelations of the velocity, respectively, and u is the

rms of a velocity component. Using the velocity 
atness factor of 3:0 in our DNS results,

10



Eq. (8) implies that g(t) /
q
�M5

t can be used to normalize the acoustic pressure pA

in order to factor out the temporal decay. Fig. 6 shows the evolution of rescaled acoustic

pressure p�A de�ned by

p�A =
(p0A)(x=L)q
(�L=c30)M

5
t

Here, L is the length of the computational region. It appears that the normalization

does factor out the temporal decay of the acoustic pressure. Fig. 7 shows the acoustic

pressure 
uctuations at di�erent observer points. The instantaneous pressure signal at a

given observation point is non-periodic, chaotic, and has a range of frequencies.

The rms acoustic pressure prms(t) observed at a distance x is obtained by ensemble-

averaging over 200 samples of 
uctuating acoustic pressure p0A. These samples are ob-

tained from the 20 cases in the DNS with each case having 10 observation points per

sphere distributed on two concentric spheres around the center of the 
ow domain. The

acoustic power emitted from the volume V of 
uid is

PV (t) =
p2
rms

(t)

�0c0
4�r2

and the acoustic power per unit mass of turbulent 
uid is

PA(t) =
PV (t)

�0V
: (9)

Fig. 8 shows the acoustic power in decibels from the DNS and the theoretical result.

The dotted curve in Fig. 8 corresponds to a value of � = 13 in Proudman's work giving

PA = 8:7�(t)
u(t)5

c5

= 0:5�(t)Mt(t)
5 (10)

and is obtained from Eq. (8) by using the de�nition of Mt =
p
2K=c0 and our DNS

result � ' 1:5u3=l. The computed power is smaller than that obtained from Eq. (10) by

6 � 8 dB over the time of the simulation. The ratio PA=�M
5

t varies between 0:15 and

0:07 in Fig. 9, i.e., by a factor of 2 during the decay of turbulent kinetic energy, while

the numerator and denominator vary by about a factor of 15 during that time. Thus,

the DNS is consistent with Proudman's result that PA is proportional to �M5

t . However,
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Characteristics of the computed acoustic pressure

The 
uctuating acoustic pressure is computed from the DNS data by the temporal

form of the Lighthill analogy,

p0A(x; t) =
1

4�c20

xixj

x3

Z
[ �Tij]� [ �Tij]dy: (5)

where [:] denotes evaluation at retarded time, while the overbar denotes ensemble average.

Thus, pA(x; t) is computed from Eq. (2); it's ensemble average calculated over the 20 DNS

cases; and �nally, the ensemble average is subtracted out to calculate p0A(x; t). Fig. 5

shows the evolution of the acoustic pressure 
uctuation p0A normalized by the ambient

pressure P0. The smallness of the acoustic pressure 
uctuation which is about seven

orders of magnitude smaller than the thermodynamic pressure would present a formidable

challenge for the direct computation of sound by simulation of the compressible Navier-

Stokes equations in the far-�eld. Since the turbulent source decays with time, the acoustic

pressure also decays with time. We have tried to factor out the decay in turbulence

statistics by dividing the random pressure signal p0A(t) by an appropriate deterministic

function g(t). The choice of g(t) was guided by the analysis of Proudman (1952) who

considered the generation of noise by isotropic turbulence and used statistical models of

various two-point moments within the framework of the Lighthill analogy to obtain the

following expression for the acoustic power PA per unit mass

PA = �(u3=l)
u5

c50
(6)

where � is a constant related to the shape of the longitudinal velocity correlation f(r), u

is the root mean square (rms) of one of the velocity components, and l is the longitudinal

integral length scale of the velocity. For the Heisenberg form of the energy spectrum,

Proudman obtains

PA = 38(u3=l)
u5

c50
(7)

and, with the assumption f(r) = e��(r=l)
2=4, Proudman obtains

PA = 13(u3=l)
u5

c50
(8)
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(� = 0), the density is constant, and the pressure is initialized with the usual Poisson

equation applicable to incompressible 
ows. Twenty simulations on a 643 grid with a

time step of �t = 0:00275(K=�)0 were caried out. A single, higher-resolution simulation

was performed on a 1283 spatial grid with �t = 0:001375(K=�)0, other parameters re-

maining equal, to check the accuracy of the coarse-grid solution. The simulations were

conducted for one eddy turnover time (�0t=K0 = 1 ). The 643 simulations were used

to obtain ensemble-averaged statistics from the instantaneous acoustic pressure, while

the 1283 simulation was used to obtain the acoustic power from the appropriate 
ow

statistics.

The turbulence statistics at a given time in a DNS case are obtained by averaging over

the computational volume. For example the turbulent kinetic energy K =< uiui > =2

where < : > denotes a volume average. In the present simulations, the turbulence is

unforced. Consequently, the turbulent kinetic energy decays in time. Figs. 1 and 2 show

the evolution of the turbulent kinetic energy K and turbulent dissipation rate �, respec-

tively. K decreases by about a factor of 5 by the end of the simulation. The evolution of

K for �0t=K0 > 0:2 is well represented by a power law decay (t� t0)
�n with the exponent

n = 1:4, a value which is slightly larger than experimentally measured exponents which

lie in the range 1:15 < n < 1:35. The turbulent dissipation rate � increases during the

initial transient in Fig. 2 due to the generation of small-scale 
uctuations, and �nally

decays in the absence of external forcing. The microscale Reynolds number Re� whose

evolution is shown in Fig. 3 decays by a factor of 3 at the end of the simulation. The

simulation is terminated at a nondimensional time �0t=K0 = 1, because Re� at later

times could become too small to represent realistically the spatio-temporal complexity

of turbulence. The skewness of the velocity derivative Sk = (@u=@x)3=[(@u=@x)2]3=2 is

a measure of the non-linear vortex stretching. According to Lesieur(1990), experiments

on grid turbulence give Sk ' �0:4, while simulations give Sk ' �0:5. Fig. 4 shows that
skewness factor asymptotes to a value of Sk = �0:46 in the DNS which is consistent

with previous experiments and simulations.
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two velocity components are scaled so as to obtain a prescribed urms =
q
u0iu

0

i, and

a prescribed � = uC
rms

=urms which is the compressible fraction of kinetic energy. The

pressure pI
0

associated with the incompressible velocity is evaluated from the Poisson

equation

r2pI
0

= ���uI
0

i;ju
I 0

j;i: (4)

It remains to specify the initial values of the thermodynamic variables. The mean density

�� is chosen equal to unity, and p is chosen so as to obtain a prescribed Mach number

urms=
q

p=�� characterizing the turbulence. The 
uctuating density �0 and compressible

pressure pC
0

are chosen as random �elds with the power spectrum determined by Eq. (3)

and prescribed �rms and pC
rms

. The pressure then becomes p = p + pI
0

+ pC
0

, the density

is � = �� + �0, and the instantaneous temperature T is obtained from the equation of

state p = �RT . We note that the splitting of velocity and pressure into incompressible

and compressible components is con�ned to the speci�cation of initial conditions. No

such split is carried out while computing the acoustic sources during the time evolu-

tion. Although the numerical algorithm is capable of simulating compressible turbulence

with non-zero density 
uctuations and non-zero dilatation, we consider low Mach num-

ber, quasi-incompressible turbulence in the present paper. The acoustic source Tij is

approximated by ��uiuj and density 
uctuations neglected in the acoustic source.

Characteristics of the simulated turbulence

The acoustic radiation from isotropic turbulence has been computed with the hybrid

DNS method for the case with the following initial parameters

Re� = 50; ; Mt = 0:05

where Re� is the Taylor microscale Reynolds number, and Mt the turbulent Mach num-

ber.( Note that Re� = q�=� where q =
q
u0iu

0

i, � = q=
q
!0

i!
0

i, !
0

i is the 
uctuating

vorticity, and � is the kinematic viscosity; while Mt = q=c where c is the mean speed

of sound.) The initial energy spectrum is given by Eq. (3) with km = 6. The initial

data for the case discussed here is chosen to be incompressible; the velocity is solenoidal
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and frequency spectrum. 20 cases were run with the same parameters and the same

initial statistics, but with di�erent instantaneous initial conditions. For each case, the

observation points were distributed on two concentric spheres in the far-�eld, 10 on each

sphere. Due to the isotropy of the turbulence, the 20 di�erent simulations with 10 dif-

ferent observer points at the same distance from the center of the 
ow domain lead to

200 di�erent samples of the acoustic pressure which is a su�ciently large number to ob-

tain acceptable statistics. The scaled acoustic power is obtained by averaging over 400

samples.

Flow simulation method

The turbulent 
ow inside a cubical domain is obtained by solving the compressible

Navier-Stokes equations by a numerical algorithm which was originally developed to in-

vestigate compressibility e�ects in isotropic turbulence (Erlebacher, Hussaini, Kreiss, and

Sarkar (1990), Sarkar, Erlebacher, Hussaini, and Kreiss (1991a)), and homogeneous shear

turbulence (Sarkar, Erlebacher, and Hussaini(1991b), Sarkar (1992)). The homogeneous

turbulence problem permits periodic boundary conditions in all three coordinate direc-

tions. It is of course necessary that the length of the computational domain be much

larger than the integral length scale of the turbulence for obtaining realistic 
ow �elds.

Spectral accuracy is obtained by using a Fourier collocation method for the spatial dis-

cretization of the governing equations. A third order, low storage Runge-Kutta scheme

is used for advancing the solution in time.

Initial conditions have to be prescribed for ui
0, �, p and T . The initial velocity �eld

is split into two independent components, that is, ui
0 = uIi

0

+uCi
0

, where each component

has a zero average. The solenoidal velocity �eld uIi
0

which satis�es r:uI 0 = 0 is chosen

to be a random Gaussian �eld with the power spectrum

E(k) = k4 exp(�2k2=k2m) (3)

where km denotes the wave number corresponding to the peak of the power spectrum.

The compressible velocity uCi
0

which satis�es r� uC
0

= 0 is also chosen to be a random

Gaussian �eld satisfying the same power spectrum, Eq. (3). The power spectra of the

5



in Eq. (2) but not in Eq. (1). However, the computer storage requirements of the space-

derivative form is smaller by a factor of 6 relative to those of the time-derivative form

which could present a signi�cant advantage in large-scale computations where computer

memory is a constraint. In Sarkar and Hussaini (1993), the relative advantages of Eqs. (1)

and (2) were investigated for a test problem with an imposed quadrupole. The retarded

time e�ect was accounted for by the time accumulation method wherein the observer

time t was approximated by t ' [(� + c0r)=�t]�t where [:] denotes the integer value

function, and �t denotes the time step used for time advancement of the 
ow. It was

found that the number of time points required for the spatial derivative form is too large;

turbulence of the quadrupole source type requires O(1=M2

t ) time points per oscillation

of the source. Due to the stringency of this requirement, we choose the time-derivative

form, Eq. (2), over the space-derivative form, Eq. (1).

Furthermore, Eq. (1) is not quite appropriate here because of the periodic boundary

conditions used for the turbulence simulation. Because of the non-zero velocity at the


uid boundary of the periodic box, the dipole contribution to the sound from the surface

of the 
ow domain is non-zero and would be included in a calculation using Eq. (1).

The surface contribution is an artifact of the boundary conditions and is not of interest

to us. Eq. (2), on the other hand, gives directly the quadrupole sound characteristic

of a �nite volume of turbulent 
ow embedded in a medium at rest. We ensure that the

periodic boundary conditions do not unrealistically a�ect both the 
ow �eld and acoustic

source by keeping the length of the computational domain much larger than the spatial

correlation lengths of the velocity �eld ui and the acoustic source �Tij.

In the case of unforced isotropic turbulence, the acoustic source term,
R �Tij(y; t� r=c0) dy,

decays in time. Consequently, the acoustic pressure is statistically unsteady and time av-

eraging is inappropriate for statistical analysis. Short-time averaging was used in Sarkar

and Hussaini (1993) to compute the statistics of the acoustic pressure. But such a method

has since proven to be unsatisfactory due to the time scale of the turbulence decay being

of the same order as the time scale of the acoustic 
uctuations. The results presented

here are substantially di�erent from the preliminary work of Sarkar and Hussaini (1993).

In the present work, ensemble averages are used to compute the acoustic intensity, power

4



which leads to an explicit vorticity-dependent term in the inhomogeneous part of the wave

equation. The explicit appearance of the vorticity in the forcing term is convenient in

unsteady 
ows such as the Von Karman vortex shedding in the laminar wake of a cylinder,

but perhaps not so important in high Reynolds number turbulent 
ows where the 
ow is

more incoherent and cannot be idealized as a simple collection of idealized vortices. It is

also more convenient in the context of vortex methods (Leonard (1985)). Applications of

the Lighthill theory are consistent with experimental data on noise radiated from subsonic

jets running at ambient temperatures. However in supersonic jets (Seiner(1992)), it

may be necessary to account for additional physical features explicitly such as Mach

wave radiation, jet screech, and other shock-associated noise. In our work on noise

generated from isotropic turbulence at low Mach numbers, Lighthill's acoustic analogy

is the preferred representation and is the one followed herein.

Computation of the Lighthill acoustic analogy

The acoustic analogy of Lighthill can be written in the space - derivative form

pA(x; t) =
1

4�

Z
Tij;ij(y; t� r=c0)

r
dy; (1)

but for a far-�eld location of the observer point with jxj >> jyj, Lighthill showed that

the integrand in (1) can be approximated by the second time derivative taken at the

retarded time yielding

pA(x; t) =
1

4�c20

xixj

x3

Z
�Tij(y; t� r=c0) dy; (2)

where pA is the 
uctuation of pressure relative to the ambient, c0 is the ambient speed

of sound, and r = jx � yj. In Eq. (1), density 
uctuations are neglected in the source

term and the approximation, Tij;ij ' @2(��uiuj)=@yi@yj, is utilized since only low Mach

numbers are considered in the present work. Here, �� is the mean density which is of

course a constant equal to the ambient density of the surrounding medium which is at

rest. In Eq. (2), �Tij(y; t�r=c0) denotes @2(��uiuj)=@t
2 evaluated at retarded time t�r=c0.

The major advantage of the time-derivative form of the acoustic analogy over the

space-derivative form is that the quadrupole nature of the sound source is directly evident

3



computational grid or by using overlapping grids, the Ret obtainable with the DNS of

sound approach can be increased. However, the e�ect of grid stretching on the accuracy

of the far-�eld acoustic pressure which is several orders of magnitude smaller than the

aerodynamic pressure has to be carefully examined. Crighton (1993) points out that

computations of low Mach number aeroacoustics by the DNS of sound approach have

to contend with a number of di�culties which include the large disparity between the

acoustic length scale and the turbulence integral length scale, the much smaller energy in

the acoustic far �eld relative to the turbulent energy, and the multipole structure of the

basic acoustic source. Due to these reasons, Lighthill (1993) recommends the use of an

acoustic analogy for the computation of sound radiated from lowMach number 
ows. The

present work employs the the hybrid DNS approach with the Lighthill acoustic analogy

for the purpose of computing the sound generated by three-dimensional, fully turbulent


ow. Lighthill's analogy has been used previously to compute the sound numerically from

the large-scale instability waves in a shear layer by Gatski (1979), but we are not aware

of any previous attempt to use the analogy within the framework of three-dimensional

DNS of turbulence.

The acoustic analogy which was �rst proposed by Lighthill (1952) reduces the aeroa-

coustics problem to an inhomogeneous wave equation. In his analogy, Lighthill chose the

homogeneous part to be a linear wave equation for the density and obtained the acoustic

far-�eld as an integral of the equivalent acoustic sources in a uniform medium at rest

which replace the 
uid motion inside a bounded volume. Furthermore, by considering

the statistics of the acoustic sources, Lighthill deduced the eighth-power law at low Mach

numbers for the net acoustic power radiated from a turbulent region.

Lighthill's analogy was followed by other analogies (Phillips (1960), Powell (1964),

Ribner (1964), Lilley (1974), and Howe (1975)). In the analogies of Phillips, Lilley and

Howe, the homogeneous part of the equation for the acoustic variable is a nonlinear

convected wave equation rather than the linear wave equation in Lighthill's analogy,

and as discussed by Goldstein (1974), Crighton (1975) and Ffowcs Williams (1977) has

the advantage of explicit consideration of the convection and refraction of sound by

turbulence. Powell and Howe rewrite the term u �ru as !�u+ru2=2 in their analogies

2



Introduction

In 1952, Lighthill posed the problem of estimating the sound radiated by \a 
uctuating


uid 
ow occupying a limited part of a very large volume of 
uid of which the remainder is

at rest" - the 
uid 
ow of course is either ordered, with coherent distributions of vorticity,

or disordered and turbulent. It is only now, four decades later, that the simplest possible

model of this problem i.e., sound radiated from a limited body of isotropic turbulence

bounded by a quiescent 
uid, is amenable to numerical simulation.

Isotropic turbulence in a bounded domain is a model wherein the turbulence is unaf-

fected by the boundaries enclosing the 
uid, and furthermore the statistical moments are

spatially invariant and independent of orientation. Isotropic grid turbulence is a similar

idealization, in that the turbulence is enclosed by wind tunnel walls and the homogeneity

of the turbulence in the central region is known to be una�ected by the wall boundary

layers. The problem of sound emitted by isotropic turbulence has been investigated by

Proudman (1952), and more recently by Lilley (1993) in an analytical study and by

Witkowska and Juve (1993) in a large eddy simulation (LES). The isotropic turbulence

is represented in our numerical study by a periodic box which contains the 
uid motion

and is surrounded by a layer in which the velocities decrease to zero. The 
uid motion

inside the periodic box is simulated, and it is assumed that the sound radiated by the

periodic box is una�ected by the surrounding thin layer.

Two possible numerical approaches to the prediction of sound produced by turbulence

are the direct numerical simulation (DNS) and the hybrid DNS. In a DNS, all relevant

scales of motion are numerically resolved in a solution of the compressible Navier-Stokes

equations; while in a hybrid DNS only the turbulent 
ow is resolved numerically. Sarkar

and Hussaini (1993) have estimated the turbulence Reynolds numbers Ret that could

be obtained for a three-dimensional calculation of sound generated by turbulence with

the two methods for a given spatial grid. It was found that for Mt = 0:01 and 0:1, the

Ret that can be simulated by DNS of sound on a uniform grid is respectively 0:004 and

0:08 times smaller than that achieved in the hybrid DNS method. Evidently, the much

larger computational volume required in the DNS of sound approach leads to a much

lower turbulence Reynolds number relative to the hybrid approach. By stretching the
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ABSTRACT

The acoustic radiation from isotropic turbulence is computed numerically. A hybrid

direct numerical simulation approach which combines direct numerical simulation (DNS)

of the turbulent 
ow with the Lighthill acoustic analogy is utilized. It is demonstrated

that the hybrid DNS method is a feasible approach to the computation of sound generated

by turbulent 
ows. The acoustic e�ciency in the simulation of isotropic turbulence

appears to be substantially less than that in subsonic jet experiments. The dominant

frequency of the computed acoustic pressure is found to be somewhat larger than the

dominant frequency of the energy-containing scales of motion. The acoustic power in the

simulations is proportional to �M5

t where � is the turbulent dissipation rate and Mt is the

turbulent Mach number. This is in agreement with the analytical result of Proudman

(1952), but the constant of proportionality is smaller than the analytical result. Two

di�erent methods of computing the acoustic power from the DNS data bases yielded

consistent results.
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